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Outline

• Introduction

• Observable Estimation

• Single Target Tracking

• Multiple Target Tracking

• Summary
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Radar Parameter Estimation

Radar

Target • Location
– Range
– Azimuth Angle
– Elevation Angle

• Size
– Amplitude (RCS)
– Radial Extent 
– Cross Range Extent

• Motion
– Radial Velocity (Doppler)
– Acceleration 
– Angular Motion about Center 

of Mass
– Ballistic Coefficient

Quantities in Blue

 

Are Usually Measured Directly

Measured Radar Observables
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Accuracy, Precision and Resolution

• Precision:
– Repeatability of a measurement

• Accuracy:
– The degree of conformity of measurement to 

the true value
– Bias Error : True value-

 

Average measured 
value

• Resolution:
– Offset (angle or range) required for two 

targets to be recognized as separate targets
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Outline

• Introduction

• Observable Estimation
– Range
– Angle
– Doppler
– Amplitude of reflected echo from target

• Single Target Tracking

• Multiple Target Tracking

• Summary
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Observable Accuracy

• Observable to be discussed
– Range
– Angle
– Doppler Velocity

• After bias errors are accounted for, noise is the key limiting 
factor in accurately measuring the above observables

– The exception is angle measurement, where for low angle 
tracking multipath errors can predominate

• The theoretical rms

 

error        of  a measurement       is of the 
form

– Where        is a constant between .5 and 1 

Mδ M

N/S
MkM =δ

k
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Limitations on Range Estimation

• Estimation of the range of a target is based upon using A/D 
sampled measurements of the round trip time to and from 
the target

• For time delay measurements , such as range, the value of 
the constant     depends on the shape of the radar pulse’s 
spectrum and the pulse’s rise time. 

• For a rectangular pulse, whose width is 

– Which yields

• For  a train of pulses it becomes:

2
TcR R=

k

N/S2
TT ≈δT

N/S2
TcR =δ

Adapted from Barton and Ward
Reference 6

( ) ( ) DTPRFN/S2
TcR =δ

DT = Dwell Time
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Theoretical vs. Practical Accuracy 
Limitations

• General
– Section 6.3 of Skolnik

 

reference 1 derives the theoretical 
limitations for each of the pertinent observables

 Time, frequency, and angle

• Range
– S/N, pulse shape and width, effective bandwidth, number of 

pulses

• Doppler Frequency
– S/N, pulse shape, integration time

• Angle
– S/N, type of measurement technique, antenna illumination 

distribution, antenna size, frequency
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Angle Estimation Issues
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Limitation on Angle Estimation

Sources of Error

Signal to Noise
Ratio

Monopulse
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Angular Accuracy with ASR Radar

• Angular beam splitting with Track While 
Scan Radar

– ~10 : 1 splitting measured
To
radar

1/16 nmi

Target Detections
From 4 CPI’s

1 Beam
w

idth
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Doppler Estimation

Doppler Frequency
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• Filter-bank spans entire radar system 
Doppler frequency band

• Detections are isolated within a single 
Doppler filter

• Use two closely spaced frequency filters 
offset from the center frequency of the 
Doppler filter containing the detection

• Doppler estimation procedure is similar to 
angle estimation with angle and frequency 
interchanged

Detect Estimate

Courtesy of MIT Lincoln Laboratory, Used with Permission
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Radar Cross Section Measurement 
Accuracy

• Measurement of the radar cross section (RCS) of a target in a 
test environment was discussed in detail in the lecture on 
Radar Cross Section (Lecture10)

• When one wants to measure the RCS of a target, the radar 
needs to be calibrated

– How do A/D counts relate to RCS values?

• This calibration process is usually accomplished by 
launching a balloon with a sphere (RCS independent of 
orientation) attached by a lengthy tether and measuring the 
amplitude in A/D counts and the range of the balloon 
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Radar Cross Section Measurement 
Accuracy

• The calibration process (continued)
– Measurement is performed in the far field
– A radiosonde

 

is usually balloon launched separately to 
measure the pressure, temperature, etc. (index of refraction 
of the atmosphere vs. height) so that propagation effects, 
such as, ducting, multipath, etc., may be taken into account 
properly and accurately

• High power radars could use spherical satellites  to perform 
the same function as the balloon borne sphere

• RCS accuracy is usually limited by the ability to measure 
atmospheric (properties) losses as  a function of the 
sphere’s range and elevation angle
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Outline

• Introduction

• Observable Estimation

• Single Target Tracking
– Angle tracking techniques

 Amplitude monopulse
 Phase comparison monopulse
 Sequential lobing
 Conical scanning

– Range tracking
– Servo systems

• Multiple Target Tracking

• Summary

Courtesy of MIT Lincoln Laboratory.
Used with permission

TRADEX
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Courtesy of US Air Force
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Single Target Tracking -
 

General

• Usually after a target is initially detected, the radar is asked

 
to:

– Continue to detect the target as it moves through the radar’s 
coverage

– Associate the different detections with the specific target
 “All these detections are from the same target”
 Use range, angle, Doppler measurements

– Use these detections to develop a continually more accurate 
estimate of the targets observables

 Position, velocity, etc
– Predict where the target will be is the future

• These are the functions of a “Tracker”
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Basics of Continuous Angle Tracking

• For radars with a dish antenna, the purpose of the tracking 
function is to keep the antenna beam axis aligned with a 
selected target.

• Illustration at left 
– Two overlapping beams -

 

target is to the right of antenna 
boresight

• Illustration at right 
– Two overlapping beams -

 

target is to the right of antenna 
boresight

 

. Target is located at boresight

 

position.

Beam ABeam A Beam B Beam B

Angle

Aa
Ba

Aa
Ba

0θ T0 θ=θ
Tθ Angle

Boresight Boresight Target DirectionTarget Direction

BA aa <

BA aa =

Adapted from Skolnik
Reference 1



Radar Systems Course    20
Parameter Estimation  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Outline

• Introduction

• Observable Estimation

• Single Target Tracking
– Angle tracking techniques

 Amplitude monopulse
 Phase comparison monopulse
 Sequential lobing
 Conical scanning

– Range tracking
– Servo systems

• Multiple Target Tracking

• Summary
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Amplitude Comparison Monopulse

• Amplitude Comparison Monopulse

 

Method: 
– Use pairs of slightly offset beams to determine the location of 

the target relative to the antenna boresight

 

(error signal)
– Use this information to re-steer the antenna (or beam) to keep 

the target very close to the antenna boresight

• For dish antennas, two offset receive beams are generated 
by using two feeds slightly displaced in opposite directions 
from the focus of a parabolic reflector

• The sum and difference of the two squinted beams are used 
to generate the error signal

• Each channel (sum, azimuth difference, and elevation 
difference) requires a separate receiver 
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Monopulse
 

Antenna Patterns
 and Error Signals
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θ
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Reference 1
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Four Horn Monopulse
 

Block Diagram
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Two Dimensional-
 

Four Horn Monopulse

B D
A C

B D
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Σ
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Monopulse
 

Error Pattern
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Functional Diagram of Monopulse
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Microwave Combining Network 
(Four Horn Monopulse

 
Feed)
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Three Types of Hybrid Junctions
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Hybrid Junctions for Monopulse
 

Radars

• A signal input at port A divides equally in amplitude and 
phase between ports C and D, but does not appear at port B

– Port B cannot support that propagation mode
• A signal input to port B divides equally but with opposite 

phases between ports C and D
– Does not appear at port A

• If inputs are applied simultaneously to ports A and B, their 
sum will appear at port C and the difference at the D

Photograph of     
C -

 

Band Magic -

 

T 
(Ridged  waveguide)

A

D

C

B
Δ

Σ

Magic -

 

T

Courtesy of Courtesy of CobhamCobham

 

Sensor Systems.Sensor Systems.
Used with permission.Used with permission.
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Hybrid Junctions Used in Monopulse
 Radar

Hybrid
Ring Junction
or “Rat-Race”

• A signal input at port A reaches output port D

 
by two separate paths, which have the same path length ( 3λ/4)

– The two paths reinforce at port D

• An input signal at port B reaches output port D through paths differing 
by one wavelength  ( 5λ/4 and λ/4)

– The two paths reinforce at port D 

• Paths from A to  D and B to D differ by 1/2 wavelength
– Signal at port A -

 

signal at port B will appear at port D

• If signals of the same phase are entered at A and , the outputs C and D 
are the sum (Σ)

 

and difference (Δ). 

4/3 gλ

4
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4
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4
gλ

Port
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Port
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• This coupler is made by aligning two rectangular 
waveguides with their walls touching

• Microwave energy from one of the waveguides is coupled to 
the other by means of appropriate holes or slots between 
the two waveguides

– Because of the quarter wave spacing between the two slots, 
this configuration is frequency sensitive

– A 90 degree phase shift has to be inserted in either port A or 
B in order to provide the sum and difference at ports C and D

Hybrid Junctions Used in Monopulse Radar

3 dB
Directional 

CouplerPort D

Port C

Port B

Port A

Primary Waveguide

Secondary Waveguide

Waves 
Add

Waves 
Cancel

4/gλ
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Monopulse
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S Band Monopulse Feed with 
X Band Center Feed

From S and X Band 
Transmitters

Four Horn 
Monopulse

 

S band 
Feed

(X band Feed at 
center)

Output

Front View
of

Output

Side View

Courtesy of MIT Lincoln Laboratory, Used with Permission
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Twelve Horn Monopulse
 

Feed

Photograph of 12 Horn Monopulse

 

Feed
Courtesy of MIT Lincoln Laboratory, Used with Permission
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Glint (Angle Noise)

• Glint, or angle noise, is a fluctuation or error in the angle 
measurement caused by the radar’s energy reflecting from 
a complex target with multiple scattering centers

– It causes a distortion of the echo wavefront
– The result of having a non-uniform wavefront

 

from a complex 
target, when the radar was designed to process a planar echo 
wavefront, is an error in the measurement of the angle of 
arrival

– The measured angle of arrival can often cause the boresight 
of the tracking antenna to point outside the angular extent of 
the target, which can cause the radar to break track

• Glint can be a major source of error when making angle 
measurements

– Short range where angular extent of target is large

• Problem for all tracking radars with closed loop angle tracking
– Monopulse, conical scan, sequential lobing
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Low Angle Tracking

• The target is illuminated via two paths (direct and reflection)

• Error in measured elevation angle occurs because of glint
– At low grazing angles, reflection coefficient close to -1 

• Tracking of targets at low elevation angles can produce 
significant errors in the elevation angle and can cause loss of 
track

• The surface reflected signal is sometimes called the multi-path

 
signal

 

and the glint error due to this geometry a multi-path error

Radar

Direct path

Multipath Ray

Target
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Measured Low Angle Tracking Error

Track Time (Minutes)

Aircraft Tracked by S-Band Phased Array radar (FPS-16 provided “Truth)
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Azimuth (deg)             32.5             30.7             30.4

 

30.3                30.3

 

30.2        
Elevation (deg)             3.0               2.4               2.0                   1.7                  1.4                1.3
Range (km)                 19.9             24.3             28.9                 33.5                38.1              42.7

Adapted from Skolnik
Reference 1
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Outline

• Introduction

• Observable Estimation

• Single Target Tracking
– Angle tracking techniques

 Amplitude monopulse
 Phase comparison monopulse
 Sequential lobing
 Conical scanning

– Range tracking
– Servo systems

• Multiple Target Tracking

• Summary
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Phase Comparison Monopulse

Two antennas radiating 
identical beams in the 
same direction

Geometry of the signals at the two antennas when received from a

 
target at an angle θ 

The phase difference of 
the signals received from 
the two antennas is :

θ
λ

π=φΔ sind2

d

d

d

θ

Also known as 
“interferometer radar”
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• Amplitude Comparison Monopulse
– Common phase center, beams squinted away from axis
– Target produces signal with same phase but different amplitudes 

(On axis amplitudes equal)

• Phase Comparison Monopulse
– Beams parallel and identical
– Lateral displacement of phase center much greater than 
– Target produces signal with same amplitude but different phase 

(On axis phases equal)
– Grating lobes and high sidelobes a problem

Comparison of Monopulse
 

Antenna Beams

Axis

Axis

λ
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Angle Estimation with Antenna Arrays

Wav
efr

onts

Antenna Array

Received
Phasefront

θ

Direction of
Propagation

• Received signal varies in phase 
across array

• Phase rate of change related to 
direction of propagation

• Estimating phase rate of 
change indicates direction of 
propagation 

– Angle-Of-Arrival (AOA)
– Direction-Of Arrival (DOA)

Courtesy of MIT Lincoln Laboratory, Used with Permission
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Outline

• Introduction

• Observable Estimation

• Single Target Tracking
– Angle tracking techniques

 Amplitude monopulse
 Phase comparison monopulse
 Sequential lobing
 Conical scanning

– Range tracking
– Servo systems

• Multiple Target Tracking

• Summary
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Sequential Lobing
 

Angle Measurement

• The Sequential Lobing

 

angle tracking technique time shares 
a single antenna beam to obtain the angle measurement in a 
sequential manner

V1

 

= voltage from upper

 

beam (lobe)
V2

 

= voltage from lower

 

beam (lobe)

If V1

 

-V2

 

> 0  Antenna pointing to high
If V1

 

-V2

 

< 0  Antenna pointing to low
If V1

 

-V2

 

= 0  Antenna pointed at target

Beam 1

Beam 2

Antenna pointed 
at target

Adapted from Sherman
Reference 5
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Sequential Lobing
 

Angle Measurement

• The differences in echo signals between the two switched 
beams is a measure of the angular displacement of the 
target from the switching axis

– The beam with the larger signal is closer to the target
– A control loop is used to redirect the beam track locations 

to equalize the beam response
– When the echo signals in the two beam positions are equal, 

the target is on axis 

Antenna Patterns

Position 1

Time

Position 2
Center of
Beam 2

Center of
Beam 1

Switching
Axis

Target Position
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Outline

• Introduction

• Observable Estimation

• Single Target Tracking
– Angle tracking techniques

 Amplitude monopulse
 Phase comparison monopulse
 Sequential lobing
 Conical scanning

– Range tracking
– Servo systems

• Multiple Target Tracking

• Summary
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Conical Scan Tracking Concept

• The angle between the axis of rotation and the axis of the antenna 
beam is the squint angle

• Because of the rotation of the squinted beam and the targets offset 
from the rotation axis, the amplitude of the echo signal will be

 
modulated at a frequency equal to the beam rotation

Typical Conical 
Scan Pattern

(8 Beam Positions 
per Scan)

Scan Pattern

Beam
Rotation

Target Axis

Rotation
Axis

Beam Axis

Antenna Pattern

Squint Angle
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Conical Scan Pulse Trains

• The amplitude of the modulation

 

is proportional to the angular 
distance between the target direction and the rotation axis

– Beam displacement

• The phase of the modulation

 

relative to the beam scanning 
position contains the direction information

– Angle error

Received Pulse Train
with

Conical-Scan Modulation
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Block Diagram of Conical Scan Radar
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Beam-Splitting

At typical detection threshold levels (~13 dB) the resolution cell can be 
approximately split by a factor of ten; i.e. 10:1 antenna beam splitting
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Courtesy of MIT Lincoln Laboratory, Used with Permission
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Angle Estimation with Scanning Radar
 (Multiple Pulse Angle Estimation)
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Angle Estimation with Scanning Radar
 (Multiple Pulse Angle Estimation)
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• For a “track-while scan”

 

radar, 
the target angle is measured by:

– Fitting the return angle data 
from different angles to the 
known antenna pattern, or

– Using the highest amplitude  
target return as the measured 
target angle location 

Detection
Threshold

Courtesy of MIT Lincoln Laboratory, Used with Permission



Radar Systems Course    52
Parameter Estimation  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Angle Estimation with Array Antennas

• Phased array radars are well suited for monopulse

 
tracking

– Amplitude Comparison Monopulse
 Radiating elements can be combined in 3 ways
 Sum, azimuth difference, and elevation difference 

patterns
– Phase Comparison Monopulse

 Use top and bottom half of array for elevation
 Use right and left half of array for azimuth

• Lens arrays (e.g. MOTR) would use amplitude 
monopulse

– Four-port feed horn would be same as for dish 
reflector

MOTR

BMEWS

Courtesy of MIT Lincoln Laboratory, Used with Permission
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Outline

• Introduction

• Observable Estimation

• Single Target Tracking
– Angle tracking techniques

 Amplitude monopulse
 Phase comparison monopulse
 Sequential lobing
 Conical scanning

– Range tracking
– Servo systems

• Multiple Target Tracking

• Summary
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Split Gate Range Tracking

Early
Gate

Signal

Difference Signal between
Early and Late Range Gates

Late 
Gate

Early 
Gate

Echo Pulse

Late
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Signal

• Two gates are generated; one is 
an early gate, the other is a late 
gate.

• In this example, the portion of 
the signal in the early gate is 
less than that of the late gate.

• The signals in the two gates are 
integrated and subtracted to 
produce the difference error 
signal.

• The sign of the difference 
indicates the direction the two 
gates have to be moved in order 
to have the pair straddle the 
echo pulse

• The amplitude of the difference 
determines how far the pair of 
gates are from the centroid.



Radar Systems Course    55
Parameter Estimation  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Multi Target Tracking in Range, Angle, 
and Doppler

• Single target angle trackers (Dish radars) can be configured 
to track other targets in the radar beam

– Useful for radars with moderate to wide beamwidths
– Favorable geometry helpful

• TRADEX and several other radars have multi-target trackers
– Primary target is kept on boresight with standard monopulse

 
angle tracker

– Up to 10 other targets, in radar beamwidth, are tracked in 
range

• Some other radars track in Doppler and in range along with 
tracking in angle
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Outline

• Introduction

• Observable Estimation

• Single Target Tracking
– Angle tracking techniques

 Amplitude monopulse
 Phase comparison monopulse
 Sequential lobing
 Conical scanning

– Range tracking
– Servo systems

• Multiple Target Tracking

• Summary
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Antenna Servo Systems

• The automatic tracking of a target in angle employs a servo 
system that utilizes the angle error signals to maintain the 
pointing of the antenna in the direction of the target

• The servo system introduces lag in the tracking that results 
in error

– The lag error depends on the target trajectory
 Straight line, gradual turn, rapid maneuver

• Type II Servo System often used in tracking radar
– No steady state error when target velocity constant
– Known as “zero velocity error system”

• The effect of velocity and acceleration on a servo system 
can be described by the frequency response of the tracking 
loop
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Servo Bandwidth

• The tracking bandwidth of a servo system is that of a low 
pass filter

• The bandwidth should be narrow to:
 Minimize the effects of noise,or jitter,
 Reject unwanted signal components

 Conical scan frequency or jet engine modulation
 Provide a smoothed output of the desired measured parameters

• The bandwidth should be wide to:
 Follow rapid changes in the target trajectory or in the vehicle 

carrying the radar
• The choice of servo bandwidth is usually a compromise

– Sensitivity vs. tracking of maneuvering target
• Tracking bandwidth may be made variable or adaptive

 Far range -

 

angle rates low, low S/N  (narrow bandwidth)
 Short range -

 

angle rates large (wide bandwidth)
 Shorter ranges -

 

Glint can be an issue (narrow bandwidth)
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Bounds on Servo Resonant Frequency

• The tracking bandwidth of a mechanical tracker should be small 
compared to the lowest natural frequency of the antenna and its 
structural foundation 

– This prevents the antenna from oscillating at its resonant frequency
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Summary –
 

Part 1

• A detailed description of the different radar observables and their 
estimation was presented

– Observables -

 

Range, angle, and Doppler velocity
– Radar cross section issues were presented in a previous lecture
– Resolution, precision and accuracy were discussed

• The different techniques for single target angle tracking were 
discussed in detail, as well as their implementation

– Amplitude monopulse
– Phase comparison monopulse
– Sequential lobing
– Conical scanning

• Range tracking techniques, as well as other related subjects were 
presented



Radar Systems Course    61
Parameter Estimation  1/1/2010

IEEE New Hampshire Section
IEEE AES Society

Homework Problems

• From Skolnik, Reference 1

– Problems 4.1, 4.3, 4.5, 4.9, 4.11, and 4.15
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Part 2

• Introduction

• Observable Estimation

• Single Target Tracking

• Multiple Target Tracking

• Summary
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